

MODULAR MULTI-MISSION AERIAL ASSISTANT FOR NATIONAL SECURITY

Members:

Lee Minyu (CHIJ St Nicholas Girls' School) Mook Rui Guang Alson (St. Joseph's Institution) Tai Kai Jun, Josh (Hwa Chong Institution)

Mentors:

Justin Teng Jia Ding, Tan Hui Shan, Chan Wei Wen Calvin, Gan Kai Ler (DSO National Laboratories)

INTRODUCTION

BACKGROUND

AIM

National security operations involve high-risk scenarios that pose significant dangers to officers, and civilians. The unpredictable nature of these operations, often in non-permissive environments or against advanced adversaries, increases the risk of conflict. Their unpredictability heightens conflict risks, necessitating advanced technology and strategic preparedness to protect personnel and national interests.

Creating a modular multi-mission interface for an unmanned aircraft to assist in National Security to...

- Decrease the risk experienced by officers
- Decrease the manpower required for such operations
- · Detain suspects through a modular, multi-mission quadcopter

No change detected in echo pins

Trigger interrupt:

read ultrasound

and distance for

each sensor

LOGIC FLOW (CODE):

Track target with

PixyCam

Check for predefined

signatures, and find its X

Calculate X and Y deviation from the centre

Adjust the X and Y

servos based on the deviation

object in deadzone

Stop servo movement

Turn on laser diode

time passed since start > 0.5s

Toggle LED

distance from target < = 30cm

time passed since start < 0.5s

1. MATERIALS

- THUNDERPOWER TP5000-4SPX25
- Baofeng Walkie Talkie BF-88E
- Dualsky AS549 Servo
- HC-SR04 Ultrasonic Sensor
- Pixy2
- MOD LED-100 Laser Diode
- Arduino Mega 2560
- 400 Tie Points Breadboard
- 5mm Red LED
- 5mm Blue LED HOLYBRO S500 V2
- Pixhawk 4 mini

Electronic Test Results:

3. Ultrasonic Sensors

1. PixyCam

2. Servo Motors

4. Laser Diode

significantly

1. Power issues

detected objects up to 1.30m away

2. METHODOLOGY

1. Literature Review: research existing modular interface standards in drones and other industries to identify design principles

- 2. Requirements Definition:
- define the technical and operational requirements for the modular interface (eg size, weight, power supply, and communication protocols)
- 3. Design and Prototyping:
- use CAD software for design

- program an Arduino microcontroller (MCU) in C++
- 4. Testing and Evaluation:

3D print prototypes

- assess durability, connectivity, and integration through lab and field tests
- 5. Iterative Improvement:
- refine design based on test results for better performance and usability 1111

Battery Holder

3. RESULTS

our code is functioning properly!

electrical wiring is correct!

6. FUTURE WORK

distance from target > 30cm

lit up correctly when

functions implemented

components only run on 5V

the Arduino, 5V connected to breadboard

the drone was near the object

an accuracy of ±0.3cm

- an object was within the PixyCam's deadzone

1. Ultrasonic sensor code slowing down the other components

b. servo tracking affected, slow to reorient the PixyCam

a. Arduino Vin port requires 7V-12V, while other onboard

b. insufficient current for the servos to function properly

Solution: power 2 separate BECs with one battery: 8V powers

• Solution: ultrasonic sensors attached to interrupt pins, interrupt

4. PROBLEMS FACED

a. rest of the code executed after sensor receives echo pulse

o successfully kept the object in the dead zone 97.5% of the

time when object was 30cm away from PixyCam

2.3% average error over tests up to 1.30m

minimal effect on gimbal response time

drone can fly!

components are in good working condition!

5. LIMITATIONS

1. Budget and legal constraints

- a. an actual Taser was unable to be acquired and used
- b. laser diode was used instead, as its method of activation was similar to that of an actual Taser
- 2. The quadcopter inherited was small and had a limited payload: 1.5kg
- a. design and setup of the quadcopter were altered multiple times to accommodate it
- c. accurate distance readings were partially sacrificed for

b. all designs had to be scaled down to fit into the quadcopter

efficiency (we could only use 4 interrupt pins)

1. Make quadcopter autonomous

- a. reduces manpower
- b. increases efficacy
- c. prevents accidents
- 2. Include visual feedback
 - a. transmitting PixyCam footage, ultrasonic sensor distance etc
- b. option of a manual override 3. Use a different board which has 8 interrupt pins
- a. use all 8 ultrasonic sensors
- b. orientation of quadcopter and detection of objects would be more accurate

7. CONCLUSION

- 1. Potential to use quadcopters to enhance law enforcement operations by providing <u>real-time</u> aerial support
- 2. Challenges were addressed with practical solutions to make the system operate more efficiently and reliably
- 3. Future work will focus on increasing the autonomy of the system and further improving sensor accuracy and operational range
- 4. Possible for dangerous conflicts to be de-escalated remotely, protecting personnel involved

8. REFERENCES

[1] B. Ekstrand, Equations of motion for a two-axes gimbal system, in IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 3, pp. 1083-1091, July 2001